MATH 2050 C Lecture 12 (Feb 24)
[Problem Set 6 posted, due on Mar 4.]
Last time: Monotone Convergence Theorem
Subsequences (Textbook §3.4)

$$\underline{Def^{4}}$$
: Let $(Xn)_{n \in \mathbb{N}}$ be a seq. of real numbers.
Suppose $n_{1} < n_{2} < n_{3} < \dots$ is a strictly increasing
sequence of natural numbers. THEN:
 $(Xn_{k})_{k \in \mathbb{N}} := (Xn_{1}, Xn_{2}, Xn_{3}, \dots, (Xn_{k}), \dots)$
is called a subsequence of $(X_{n})_{n \in \mathbb{N}}$
 $\underline{Picture}$:
 $n \in \mathbb{N}$ $(Xn_{n}) = (X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}, \dots)$

keiN
$$(\chi_{n_k}) = (\chi_1, \chi_2, \chi_4, \chi_6, ...)$$

 $k=1$ $k=2$ $k=3$ $k=4$
 $n_1=1$ $n_2=2$ $n_3=4$ $n_4=6$

Example: (Tail of a seq.) For each REN, the R-tail of a seq. (Xn) is a subseq. (XK+l) RGN i.e. nk := k+ 2 Example: $(\chi_n) = ((-1)^n) = (-1, 1, -1, 1, -1, 1,)$ ~ Subseq. (X2k) = (1,1,1,1,1,...) Idea: Try to understand the convergence/divergence of the original seq. (Xn) by looking at its subsequences. Thm: Suppose $\lim_{n\to\infty} \chi_n = \chi$. THEN, every subseq. (Xn,) of (Xn) also converges to the same limit. $(ie. \lim_{n \to \infty} x_n = x \implies \lim_{k \to \infty} \chi_{n_k} = x)$ Proof: Note: Nk>K VREIN (Pf by induction) Let E>O be fixed but arbitrary. $\lim_{n\to\infty} x_n = x \implies \exists k \in \mathbb{N} \text{ s.t } |x_n - x| < \varepsilon$ 🖞 n 🅉 K Whenew k > K, we have Nk > k > K. hence $|\chi_{n_k} - \chi| < \xi \quad \forall h > k$

Example (revisited)
$$\lim_{n \to \infty} C^{\frac{1}{n}} = 1$$
 where $C > 1$
is fixed
Pf: Let $(X_n) = (C^{\frac{1}{n}})$. One can show, by induction.
 (X_n) is decreasing and bold below by 1
MCT
 $X := \lim_{n \to \infty} X_n$ exists.
Consider only the even terms, i.e. the subseq
 $(X_{n_k}) = (X_{2k})_{k \in \mathbb{N}}$ of $(X_n)_{n \in \mathbb{N}}$.
By Thum above. $\lim_{k \to \infty} X_{n_k} = X$
 $\sum_{k \to \infty} O$ between $\sum_{k \to \infty} (C^{\frac{1}{n}})^{\frac{1}{2}} = (X_n)^{\frac{1}{2}}$
Take $n \to \infty$ on both sides. we obtain
 $X = \int X = \sum_{\substack{n \in \mathbb{N} \\ n \in \mathbb{N}}} X = \sum_{\substack{n \in \mathbb{N} \\ n \in \mathbb{N}}} \sum_{n \geq 1} \frac{1}{n}$

Remark: The theorem above also provides a

"divergence criteria".

Thm:
$$(X_n)$$
 convergent $\Rightarrow ANY$ subseq (X_{n_k}) of (X_n)
converges to the same
limit.

Cov: If any of the following holds:
(i)
$$\exists$$
 subseq. (Xn_k) which is divergent
(ii) \exists two subseq. (Xn_k) & $(Xn_{k'})$ st
lim $Xn_k \neq \lim_{k \to \infty} Xn_k$.
then (Xn) is divergent.
E.g.) $((-1)^n)$ is divergent since \exists two subseq.
 $(-1,-1,-1,-1,-1,...) \rightarrow -1$
 $(1,1,1,1,1,...) \rightarrow -1$
 $(1,1,1,1,1,...) \rightarrow 1$
E.g.) $(Xn) = (0,1,0,2,0,3,0,4,...,0,1,...)$
is divergent, since \exists subseq.
 $(1,2,3,4,...,1,...)$ unbodd \Rightarrow divergent